Вольфрам – самый тугоплавкий металл в мире. Способы добычи, свойства и характеристики вольфрама

Поделись знанием: Материал из Википедии — свободной энциклопедии Перейти к: навигация, поиск

74 ТанталВольфрамРений
Mo ↑ W ↓ Sg

: неверное или отсутствующее изображение

74W

Внешний вид простого вещества
Тугоплавкий прочный металл, стального цвета или белый
Свойства атома
Название, символ, номер

Вольфра́м / Wolframium (W), 74

Атомная масса (молярная масса)

183,84(1)[1] а. е. м. (г/моль)

Электронная конфигурация

[Xe] 4f14 5d4 6s2

Радиус атома

141 пм

Химические свойства
Ковалентный радиус

170 пм

Радиус иона

(+6e) 62 (+4e) 70 пм

Электроотрицательность

2.3 (шкала Полинга)

Электродный потенциал

W ← W3+ 0,11 В W ← W6+ 0,68 В

Степени окисления

6, 5, 4, 3, 2, 0

Энергия ионизации (первый электрон)

 769,7 (7,98) кДж/моль (эВ)

Термодинамические свойства простого вещества
Плотность (при н. у.)

19,25[2] г/см³

Температура плавления

3695 K (3422 °C, 6192 °F)[2]

Температура кипения

5828 K (5555 °C, 10031 °F)[2]

Уд. теплота плавления

191 кДж/кг 35 кДж/моль

Уд. теплота испарения

4482 кДж/кг 824 кДж/моль

Молярная теплоёмкость

24,27[3] Дж/(K·моль)

Молярный объём

9,53 см³/моль

Кристаллическая решётка простого вещества
Структура решётки
Параметры решётки

3,160 Å

Температура Дебая

310 K

Прочие характеристики
Теплопроводность

(300 K) 162,8[4] Вт/(м·К)

74 Вольфрам
W 183,84
4f145d46s2

Вольфра́м — химический элемент с атомным номером 74 в Периодической системе химических элементов Д. И. Менделеева, обозначается символом W (лат. Wolframium). При нормальных условиях представляет собой твёрдый блестящий серебристо-серый переходный металл[3].

Вольфрам — самый тугоплавкий из металлов. Более высокую температуру плавления имеет только неметаллический элемент — углерод. При стандартных условиях химически стоек.

История и происхождение названия

Название Wolframium перешло на элемент с минерала вольфрамит, известного ещё в XVI в. под названием лат. Spuma lupi («волчья пена») или нем. Wolf Rahm («волчьи сливки», «волчий крем»[3][5][6]). Название было связано с тем, что вольфрам, сопровождая оловянные руды, мешал выплавке олова, переводя его в пену шлаков («пожирает олово как волк овцу»).

В настоящее время в США, Великобритании и Франции для вольфрама используют название «tungsten» (швед. tung sten — «тяжелый камень»).

В 1781 году знаменитый шведский химик Шееле, обрабатывая азотной кислотой минерал шеелит, получил жёлтый «тяжёлый камень» (триоксид вольфрама). В 1783 году испанские химики братья Элюар сообщили о получении из саксонского минерала вольфрамита как растворимой в аммиаке жёлтой окиси нового металла, так и самого металла. При этом один из братьев, Фаусто, был в Швеции в 1781 году и общался с Шееле. Шееле не претендовал на открытие вольфрама, а братья Элюар не настаивали на своём приоритете.

Нахождение в природе

Кларк вольфрама земной коры составляет (по Виноградову) 1,3 г/т (0,00013 % по содержанию в земной коре). Его среднее содержание в горных породах, г/т: ультраосновных — 0,1, основных — 0,7, средних — 1,2, кислых — 1,9.

Вольфрам встречается в природе главным образом в виде окисленных сложных соединений, образованных трехокисью вольфрама WO3 с оксидами железа и марганца или кальция, а иногда свинца, меди, тория и редкоземельных элементов. Промышленное значение имеют вольфрамит (вольфрамат железа и марганца nFeWO4 * mMnWO4 — соответственно, ферберит и гюбнерит) и шеелит (вольфрамат кальция CaWO4). Вольфрамовые минералы обычно вкраплены в гранитные породы, так что средняя концентрация вольфрама составляет 1—2 %.

Месторождения

Наиболее крупными запасами обладают Казахстан, Китай, Канада и США; известны также месторождения в Боливии, Португалии, России, Узбекистане и Южной Корее. Мировое производство вольфрама составляет 49—50 тысяч тонн в год, в том числе в Китае 41, России 3,5; Казахстане 0,7, Австрии 0,5. Основные экспортёры вольфрама: Китай, Южная Корея, Австрия. Главные импортёры: США, Япония, Германия, Великобритания. Также есть месторождения вольфрама в Армении и других странах.

Получение

Процесс получения вольфрама проходит через подстадию выделения триоксида WO3 из рудных концентратов и последующем восстановлении до металлического порошка водородом при температуре ок. 700 °C. Из-за высокой температуры плавления вольфрама для получения компактной формы используются методы порошковой металлургии: полученный порошок прессуют, спекают в атмосфере водорода при температуре 1200—1300 °C, затем пропускают через него электрический ток. Металл нагревается до 3000 °C, при этом происходит спекание в монолитный материал. Для последующей очистки и получения монокристаллической формы используется зонная плавка.

Физические свойства

Вольфрам — блестящий светло-серый металл, имеющий самые высокие доказанные температуры плавления и кипения (предполагается, что сиборгий ещё более тугоплавок, но пока что об этом твёрдо утверждать нельзя — время существования сиборгия очень мало). Температура плавления — 3695 K (3422 °C), кипит при 5828 K (5555 °C)[2]. Плотность чистого вольфрама составляет 19,25 г/см³[2]. Обладает парамагнитными свойствами (магнитная восприимчивость 0,32·10−9). Твердость по Бринеллю 488 кг/мм², удельное электрическое сопротивление при 20 °C — 55·10−9 Ом·м, при 2700 °C — 904·10−9 Ом·м. Скорость звука в отожжённом вольфраме 4290 м/с.

Вольфрам является одним из наиболее тяжелых, твердых и самых тугоплавких металлов[3]. В чистом виде представляет собой металл серебристо-белого цвета, похожий на платину, при температуре около 1600 °C хорошо поддается ковке и может быть вытянут в тонкую нить.

Химические свойства

Проявляет валентность от 2 до 6. Наиболее устойчив 6-валентный вольфрам. 3- и 2-валентные соединения вольфрама неустойчивы и практического значения не имеют.

Вольфрам имеет высокую коррозионную стойкость: при комнатной температуре не изменяется на воздухе; при температуре красного каления медленно окисляется в оксид вольфрама (VI). Вольфрам в ряду напряжений стоит сразу после водорода, и в соляной, разбавленной серной и плавиковой кислотах почти нерастворим. В азотной кислоте и царской водке окисляется с поверхности. Растворяется в перекиси водорода.

Легко растворяется в смеси азотной и плавиковой кислот[7]:

mathsf{ 2W + 4HNO_3 + 10HF longrightarrow WF_6 + WOF_4 + 4NO uparrow + 7H_2O }

Реагирует с расплавленными щелочами в присутствии окислителей[8]:

mathsf{2W + 4NaOH + 3O_2 longrightarrow 2Na_2WO_4 + 2H_2O}
mathsf{W + 2NaOH + 3NaNO_3 longrightarrow Na_2WO_4 + 3NaNO_2 + H_2O}

Поначалу данные реакции идут медленно, однако при достижении 400 °C (500 °C для реакции с участием кислорода) вольфрам начинает саморазогреваться, и реакция протекает достаточно бурно, с образованием большого количества тепла.

Растворяется в смеси азотной и плавиковой кислоты, образуя гексафторвольфрамовую кислоту H2[WF6]. Из соединений вольфрама наибольшее значение имеют: триоксид вольфрама или вольфрамовый ангидрид, вольфраматы, перекисные соединения с общей формулой Me2WOX, а также соединения с галогенами, серой и углеродом. Вольфраматы склонны к образованию полимерных анионов, в том числе гетерополисоединений с включением других переходных металлов.

Применение

Главное применение вольфрама — как основа тугоплавких материалов в металлургии.

Металлический вольфрам

  • Тугоплавкость и пластичность вольфрама делают его незаменимым для нитей накаливания в осветительных приборах, а также в кинескопах и других вакуумных трубках.
  • Благодаря высокой плотности вольфрам является основой тяжёлых сплавов, которые используются для противовесов, бронебойных сердечников подкалиберных и стреловидных оперенных снарядов артиллерийских орудий, сердечников бронебойных пуль и сверхскоростных роторов гироскопов для стабилизации полёта баллистических ракет (до 180 тыс. об/мин).
  • Вольфрам используют в качестве электродов для аргоно-дуговой сварки.
  • Сплавы вольфрама, ввиду его высокой температуры плавления, получают методом порошковой металлургии. Сплавы, содержащие вольфрам, отличаются жаропрочностью, кислотостойкостью, твердостью и устойчивостью к истиранию. Из них изготовляют хирургические инструменты (сплав «амалой»), танковую броню, оболочки торпед и снарядов, наиболее важные детали самолетов и двигателей, контейнеры для хранения радиоактивных веществ. Вольфрам — важный компонент лучших марок инструментальных сталей.
  • Вольфрам применяется в высокотемпературных вакуумных печах сопротивления в качестве нагревательных элементов. Сплав вольфрама и рения применяется в таких печах в качестве термопары.

Соединения вольфрама

  • Для механической обработки металлов и неметаллических конструкционных материалов в машиностроении (точение, фрезерование, строгание, долбление), бурения скважин, в горнодобывающей промышленности широко используются твёрдые сплавы и композитные материалы на основе карбида вольфрама (например, победит, состоящий из кристаллов WC в кобальтовой матрице; широко применяемые в России марки — ВК2, ВК4, ВК6, ВК8, ВК15, ВК25, Т5К10, Т15К6, Т30К4), а также смесей карбида вольфрама, карбида титана, карбида тантала (марки ТТ для особо тяжёлых условий обработки, например, долбление и строгание поковок из жаропрочных сталей и перфораторное ударно-поворотное бурение крепкого материала). Широко используется в качестве легирующего элемента (часто совместно с молибденом) в сталях и сплавах на основе железа. Высоколегированная сталь, относящаяся к классу «быстрорежущая», с маркировкой, начинающейся на букву Р, практически всегда содержит вольфрам. ( Р18, Р6М5. от rapid — быстрый, скорость)
  • Сульфид вольфрама WS2 применяется как высокотемпературная (до 500 °C) смазка.
  • Некоторые соединения вольфрама применяются как катализаторы и пигменты.
  • Монокристаллы вольфраматов (вольфраматы свинца, кадмия, кальция) используются как сцинтилляционные детекторы рентгеновского излучения и других ионизирующих излучений в ядерной физике и ядерной медицине.

Металлы и сплавы — это незаменимая основа для литейного и ювелирного производства, ковки и многих других сфер. Что бы ни делал человек из металла (какой бы это ни был процесс), для правильной работы ему нужно знать, при какой температуре плавится тот или иной металл. Мы подробно рассмотрим процесс плавления, его отличие от кипения, а также сравним температуры в таблицах.

Содержание

Таблица температур плавления

Узнать какая нужна температура для плавления металлов, поможет таблица по возрастанию температурных показателей.

Элемент или соединение Необходимый температурный режим
Литий +18°С
Калий +63,6°С
Индий +156,6°С
Олово +232°С
Таллий +304°С
Кадмий +321°С
Свинец +327°С
Цинк +420°С

Таблица плавления среднеплавких металлов и сплавов.

Элемент либо сплав Температурный режим
Магний +650°С
Алюминий +660°С
Барий +727°С
Серебро +960°С
Золото +1063°С
Марганец +1246°С
Медь +1083°С
Никель +1455°С
Кобальт +1495°С
Железо +1539°С
Дюрали +650°С
Латуни +950…1050°С
Чугун +1100…1300°С
Углеродистые стали +1300…1500°С
Нихром +1400°С

Таблица плавления тугоплавких металлов и сплавов.

Наименование элемента Температурный режим
Титан +1680°С
Платина +1769,3°С
Хром +1907°С
Цирконий +1855°С
Ванадий +1910°С
Иридий +2447°С
Молибден +2623°С
Тантал +3017°С
Вольфрам +3420°С

Что такое температура плавления

Каждый металл имеет неповторимые свойства, и в этот список входит температура плавления. При плавке металл уходит из одного состояния в другое, а именно из твёрдого превращается в жидкое. Чтобы сплавить металл, нужно приблизить к нему тепло и нагреть до необходимой температуры – этот процесс и называется температурой плавления. В момент, когда температура доходит до нужной отметки, он ещё может пребывать в твёрдом состоянии. Если продолжать воздействие – металл или сплав начнет плавиться.

Интересное:  Описание прямой и обратной полярности при сварке

Плавление и кипение – это не одно и то же. Точкой перехода вещества из твердого состояния в жидкое, зачастую называют температуру плавления металла. В расплавленном состоянии у молекул нет определенного расположения, но притяжение сдерживает их рядом, в жидком виде кристаллическое тело оставляет объем, но форма теряется.

При кипении объем теряется, молекулы между собой очень слабо взаимодействуют, движутся хаотично в разных направлениях, совершают отрыв от поверхности. Температура кипения – это процесс, при котором давление металлического пара приравнивается к давлению внешней среды.

Для того, чтобы упростить разницу между критическими точками нагрева мы подготовили для вас простую таблицу:

Свойство Температура плавки Температура кипения
Физическое состояние Сплав переходит в расплав, разрушается кристаллическая структура, проходит зернистость Переходит в состояние газа, некоторые молекулы могут улетать за пределы расплава
Фазовый переход Равновесие между твердым состоянием и жидким Равновесие давления между парами металла и воздухом
Влияние внешнего давления Нет изменений Изменения есть, температура уменьшается при разряжении

При какой температуре плавится

Металлические элементы, какими бы они ни были — плавятся почти один в один. Этот процесс происходит при нагреве. Оно может быть, как внешнее, так и внутреннее. Первое проходит в печи, а для второго используют резистивный нагрев, пропуская электричество либо индукционный нагрев. Воздействие выходит практически схожее. При нагреве, увеличивается амплитуда колебаний молекул. Образуются структурные дефекты решётки, которые сопровождаются обрывом межатомных связей. Под процессом разрушения решётки и скоплением подобных дефектов и подразумевается плавление.

У разных веществ разные температуры плавления. Теоретически, металлы делят на:

  1. Легкоплавкие – достаточно температуры до 600 градусов Цельсия, для получения жидкого вещества.
  2. Среднеплавкие – необходима температура от 600 до 1600 ⁰С.
  3. Тугоплавкие – это металлы, для плавления которых требуется температура выше 1600 ⁰С.

Плавление железа

Температура плавления железа достаточно высока. Для технически чистого элемента требуется температура +1539 °C. В этом веществе имеется примесь — сера, а извлечь ее допустимо лишь в жидком виде.

Интересное:  Особенности контроля сварных соединений

Без примесей чистый материал можно получить при электролизе солей металла.

Плавление чугуна

Чугун – это лучший металл для плавки. Высокий показатель жидкотекучести и низкий показатель усадки дают возможность эффективнее пользоваться им при литье. Далее рассмотрим показатели температуры кипения чугуна в градусах Цельсия:

  • Серый — температурный режим может достигать отметки 1260 градусов. При заливке в формы температура может подниматься до 1400.
  • Белый — температура достигает отметки 1350 градусов. В формы заливается при показателе 1450.

Важно! Показатели плавления такого металла, как чугун – на 400 градусов ниже, по сравнению со сталью. Это значительно снижает затраты энергии при обработке.

Плавление стали

Плавления стали при температуре 1400 °C

Сталь — это сплав железа с примесью углерода. Её главная польза — прочность, поскольку это вещество способно на протяжении длительного времени сохранять свой объем и форму. Связано это с тем, что частицы находятся в положении равновесия. Таким образом силы притяжения и отталкивания между частицами равны.

Справка! Сталь плавится при 1400 °C.

Плавление алюминия и меди

Температура плавления алюминия равна 660 градусам, это означает то, что расплавить его можно в домашних условиях.

Чистой меди – 1083 градусов, а для медных сплавов составляет от 930 до 1140 градусов.

От чего зависит температура плавления

Для разных веществ температура, при которой полностью перестраивается структура до жидкого состояния – разная. Если взять во внимание металлы и сплавы, то стоит подметить такие моменты:

  1. В чистом виде не часто можно встретить металлы. Температура напрямую зависит от его состава. В качестве примера укажем олово, к которому могут добавлять другие вещества (например, серебро). Примеси позволяют делать материал более либо менее устойчивым к нагреву.
  2. Бывают сплавы, которые благодаря своему химическому составу могут переходить в жидкое состояние при температуре свыше ста пятидесяти градусов. Также бывают сплавы, которые могут «держаться» при нагреве до трех тысяч градусов и выше. С учетом того, что при изменении кристаллической решетки меняются физические и механические качества, а условия эксплуатации могут определяться температурой нагрева. Стоит отметить, что точка плавления металла — важное свойство вещества. Пример этому – авиационное оборудование.

Интересное:  Сварные швы — дефекты и их устранение

Термообработка, в большинстве случаев, почти не изменяет устойчивость к нагреву. Единственно верным способом увеличения устойчивости к нагреванию можно назвать внесение изменений в химический состав, для этого и проводят легирование стали.

У какого металла самая высокая температура плавления

Вольфрам – самый тугоплавкий металл, 3422 °C (6170 °F).

Твердый, тугоплавкий, достаточно тяжелый материал светло-серого цвета, который имеет металлический блеск. Механической обработке поддается с трудом. При комнатной температуре достаточно хрупок и ломается. Ломкость металла связана с загрязнением примесями углерода и кислорода.

Примечание! Технически, чистый металл при температуре выше четырехсот градусов по Цельсию становится очень пластичным. Демонстрирует химическую инертность, неохотно вступает в реакции с другими элементами. В природе встречается в виде таких сложных минералов, как: гюбнерит, шеелит, ферберит и вольфрамит.

Вольфрам можно получить из руды, благодаря сложным химическим переработкам, в качестве порошка. Используя прессование и спекание, из него создают детали обычной формы и бруски.

Вольфрам — крайне стойкий элемент к любым температурным воздействиям. По этой причине размягчить вольфрам не могли более сотни лет. Не существовало такой печи, которая смогла бы нагреться до нескольких тысяч градусов по Цельсию. Ученым удалось доказать, что это самый тугоплавкий металл. Хотя бытует мнение, что сиборгий, по некоторым теоретическим данным, имеет большую тугоплавкость, но это лишь предположение, поскольку он является радиоактивным элементом и у него небольшой срок существования.

Содержание

Вольфрам — металл с уникальными свойствами. Он имеет самую высокую температуру кипения (5555 °C — такая же температура в фотосфере Солнца) и плавления (3422 °C) среди металлов, при этом — самый низкий коэффициент теплового расширения. Кроме того, он — один самых твёрдых, тяжёлых, стабильных и плотных металлов: плотность вольфрама сравнима с плотностью золота и урана и в 1, 7 раза выше, чем у свинца.

Его электропроводность почти в 3 раза ниже, чем у меди, однако достаточно высока. В очищенном виде вольфрам — серебристо-белый, напоминает по внешнему виду сталь или платину, при значительном нагреве — до 1600 °C — отлично куётся.

История открытия и применения

Своё название металл получил от вольфрамита — минерала, название которого с латинского переводится как «волчья пена», а с немецкого — как «волчьи сливки». Такое странное наименование связано с поведением минерала: он мешал выплавлять олово, когда сопровождал добытую оловянную руду, превращая ценный в средние века материал в пену шлаков. Про него тогда говорили: «ест олово, словно овцу волк».

Открытие чистого вольфрама произошло в двух местах одновременно. В 1781 году химик Шееле (Швеция) получает «тяжёлый камень», воздействуя азотной кислотой на шеелит. А в 1783 году химики Элюар (Испания) также сообщают о выделении чистого вольфрама. Главные запасы металла оказались в Казахстане, Канаде, Китае, США.

Применение вольфрама. Карбид вольфрама.

Примерно 50% вольфрама используется для производства твёрдых материалов, в особенности — карбида вольфрама с температурой плавления 2770 °С.

Карбид вольфрама — химическое соединение равных по числу атомов вольфрама и углерода. Он в 2 раза жёстче, чем сталь, имеет коэффициент жёсткости 9 по шкале Мооса (у алмаза коэффициент 10).

Карбид вольфрама применяют для изготовления:

– режущих инструментов, чрезвычайно устойчивых к истиранию и воздействию высоких температур;

– бронебойных боеприпасов;

– танковой брони; – деталей самолётов и двигателей;

– деталей космических кораблей и ракет;

– оборудования для атомной промышленности;

– балластов для килей яхт, коммерческих воздушных судов, гоночных автомобилей;

– хирургических инструментов, предназначенных для открытой (полостной) хирургии и лапароскопической (ножницы, пинцеты, захваты, резаки и другие), — они дороже, чем медицинская сталь, однако обладают лучшей производительностью;

– ювелирных изделий, особенно свадебных колец: популярность вольфрама в обручальных кольцах вызвана физическими свойствами металла (прочностью, тугоплавкостью, словно символизирующими подобную же прочность отношений) и его внешним видом — отполированный, вольфрам неопределённо долго сохраняет сияющий, зеркальный вид, так как в обычной жизни поцарапать его чем-то невозможно;

– шарика в дорогих шариковых ручках;

– калибровочных блоков, используемых, в свою очередь, для производства прецизионных длин в размерной метрологии.

Другие случаи применения вольфрама

Вольфрам применяют в производстве нагревательных элементов для высокотемпературных вакуумных печей, нитей накаливания в разнообразных приборах освещения. Сульфид вольфрама нашёл применение в качестве высокотемпературной смазки, выдерживающей нагрев до 500 °C. Монокристаллы вольфраматов используют в ядерной физике и медицине.

Вольфрам относится к переходным металлам — группе элементов, которые находятся в середине периодической таблицы. Высокая температура плавления — одно из необычных свойств вольфрама, она составляет 3410 °C. Это наибольшая точка плавления среди всех металлов. Ещё одно важное свойство — прочность на очень высоких температурах. Эти свойства определяют основное основную сферу, где используют вольфрам — изготовление сплавов.

Физические характеристики и химические свойства

Вольфрам — прочное твёрдое вещество, цвет которого колеблется от стального серого до почти белого. Его температура плавления самая высокая среди всех металлов — 3410 °C. Его плотность составляет около 19.3 грамма на кубический сантиметр. Этот материал очень хорошо проводит ток. Теплоёмкость вольфрама 134,4 Дж/(кг·град) и возрастает с увеличением температуры. Электропроводность у него не столь велика и уступает электропроводности меди почти в 3 раза.

Это относительно неактивный металл. Не реагирует с кислородом при комнатной температуре. Он ржавеет при температурах свыше 400 °C. Слабо реагирует с кислотами, хотя растворяется в азотной кислоте.

  • Обозначение в таблице Менделеева: W;
  • Атомный номер: 74;
  • Тип элемента: Переходный металл;
  • Плотность: 19,3 г/см 3;
  • Температура плавления: 3410 градуса по Цельсию;
  • Температура кипения: 5555 градусов по Цельсию;
  • Твёрдость: 488 кг/мм 2;
  • Удельная теплота плавления: 184 кДж/кг;
  • Сопротивление в нормальных условиях: 55·10^(−9) Ом·м;
  • Теплопроводность (300 K): 162,8 Вт/(м·К).

Нахождение в природе и способы добывания

В природе не встречается в чистом виде. Наиболее распространённые руды, в которых он находится, шеелит и вольфрамит. Это один из наиболее редких элементов. В чистом виде может быть получен путём нагрева окиси вольфрама с алюминием. Он также получается в результате прохождения газообразного водорода через нагретую до высоких температур вольфрамовую кислоту.

Читайте еще:   Какой лазерный строительный дальномер лучше выбрать

Область применения

Существует много отраслей производства, где применяется вольфрам. Основная сфера применения — производство сплавов. Этот металл повышает твёрдость, прочность, упругость и улучшает способность растягиваться у различных видов стали.

Обычно его готовят в двух формах: ферровольфрам — сплав железа и вольфрама, он обычно содержит около 70−80% вольфрама. Ферровольфрам смешивается с другими металлами и сплавами (обычно со сталью) для производства специализированных соединений. И также он производится в порошкообразной форме. В дальнейшем его добавляют к другим металлам с целью получения новых соединений с улучшенными характеристиками .

Около 90% всех вольфрамовых сплавов используются в горнодобывающей промышленности, строительстве, а также электротехническом и металлообрабатывающем оборудовании. Эти сплавы используются для изготовления многих вещей: нагревательные элементы в печах (благодаря хорошей теплопроводности), деталей для самолётов и космических аппаратов; оборудования, используемого в телевизионной, радиолокационной и радиотехнике; высокопрочных свёрл; металлорежущих инструментов и аналогичного оборудования.

Небольшое количество вольфрама используется в лампах накаливания. Очень тонкий провод, который образует нить в лампах, сделан именно из него. Электрический ток проходит через эту нить и нагревает её, что заставляет её испускать свет. Он не плавится благодаря тому, что температура плавления вольфрама высока.

Также он используется, в таких приборах и элементах, как:

  • электроды для сварки;
  • противовесы;
  • магниты;
  • рентгеновские аппараты;
  • обмотки и нагревательные элементы электроплит;
  • катоды радиоламп и электронных приборов (торированный вольфрам);
  • магнетроны в микроволновых печах;
  • химические катализаторы.

Кроме того, он применяется при металлообработке и добыче полезных ископаемых, а также для производства пигментов для красок.

Характеристика сплавов

Самое важное соединение — карбид вольфрама. У него очень высокая температура плавления — 2780 °C. Он используется для того, чтобы делать части электрических цепей, режущих инструментов, металлокерамики и «цементированного» карбида.

Читайте еще:   Изготовление складного домашнего верстака для мастерской

Металлокерамика — это материал из керамики и металла. Керамика — глинистый материал. Металлокерамику используют там, где очень высокие температуры воздействуют в течение длительного времени. Например, части ракетного или реактивного двигателя делаются именно из неё.

«Цементированный» карбид изготавливается путём соединения карбида вольфрама к другому металлу. Продукт очень прочен и остаётся прочным в условиях высоких температур. Именно «цементированные» карбиды используются для бурения тоннелей. Инструменты, сделанные из такого материала, могут работать на скоростях в 100 раз больше, чем аналогичные инструменты, сделанные из стали (к примеру, свёрла их такого материала могут выдержать большую температуру, чем свёрла из стали, а, следовательно, и интенсивность их использования может быть выше).

Интересные факты

Вольфрам — самый тяжёлый материал в инженерии, у него самая высокая точка плавления, самый высокий модуль упругости и самое низкое давление пара. Кроме того, он не окисляется на воздухе и сохраняет прочность при высоких температурах и растяжении. Это один из самых популярных цветных металлов, который не оказывается сильного воздействия на растения, людей или животных. В умеренных количествах он не опасен для здоровья.

Советы по экономии

Карандаш 2,0 image image 3062 13 В прошлый раз мой пост о Цинке видимо не «зацепил» https://fishki.net/profile/417654/, вот и прикрыли вход через «в контакте». Обидно, что 181 пост остался без хозяина. Подробно через пару дней. А теперь к сути. Как нам рассказывали: миллионы лет назад, наши далёкие предки изготавливали себе инструменты, оружие — из дерева или камня, но вот спустя не одно тысячелетие научились таки добывать металлы, изготавливать более современное оружие, инструменты и… image —> И попёрло. С этого момента человечество стало развиваться немыслимыми темпами. И добралось таки до вольфрама. Все мы знаем(кто конечно изредка посещал уроки химии), что вольфрам закрепился в периодической системе(таблице) Д. Менделеева под номером 74, а как? Сейчас будем разбираться. —> image —> В 15-16 веках вольфрам считали одним из минералов олова. И долгое время никто не мог понять, почему из таких же руд добывается в 2 раза меньше олова. «Поскрипев» мозгами ученые пришли к выводу, что в процессе плавки олово «съедает» неизвестный элемент. Именно такое поведение элемента и привело к появлению названия имеющие волчьи повадки — вольфрамит. —> image —> Знаменитый шведский химик Карл Шееле, член Стокгольмской Академии наук, кстати, аптекарь по профессии имел собственную маленькую лабораторию где проводил много замечательных исследований. Он открыл кислород, хлор, барий, марганец. И вот в 1781 году, незадолго до своей смерти, Шееле обнаружил, что минерал тунгстен (впоследствии названный шеелитом) представляет собой соль неиз вестной в те времена кислоты. —> image —> Спустя два года испанские химики, братья д'Элуяр(Элюар), работавшие под руководством Шееле, сумели выделить из этого минерала новый элемент — вольфрам и в 1783 году братья заявили миру об открытии нового элемента. Они разложили минерал с помощью азотной кислоты. В итоге, «кислая земля» образовала осадок в виде окиси неизвестного металла. Он легко растворялся в аммиаке. При этом, та же окись входила и в состав минерала наряду с окислами марганца и железа. Проведя домашние «баталии» братья решили вернуть минералу имя вольфрамит, а элементу присвоили имя вольфрам. —> image —> Из-за ряда причин это имя тогда практически не прижилось. Основной из них считают ошибочное суждение о том, что вольфрам – это вольфрамит. По факту же вольфрамит является всего лишь минералом вольфрама. В то время в научной среде вольфрамит именовали тунгстен. Даже в медицинских справочниках и научных статьях американских, французских и английских учёных он фигурировал только под именем тунгстен(тяжеловесный камень) и имел буквенное обозначение Tu. Свое настоящее имя вольфрам получил только после того, как попал в таблицу Менделеева и которому судьба уготовила произвести переворот в промышленности. —> image —> Небольшое отступление… Есть ещё «тёмная лошадка» — Сиборгий. Предполагается, что Сиборгий ещё более тугоплавок, но пока об этом твёрдо не говорят. Потому что время существования Сиборгия очень мало. Сиборгий был получен искусственно, путём ядерного синтеза. Большое число частиц в ядре делает атом нестабильным и вызывает расщепление на более мелкие осколки сразу после получения. —> —> Ну что ж, вернёмся к Вольфраму. При температуре около 1600 °C хорошо поддаётся ковке и может быть вытянут в тонкую нить. При стандартных условиях Вольфрам химически стоек, обладает высокой устойчивостью в вакууме. —> —> Сплавы Вольфрама получают методом порошковой металлургии, они отличаются жаропрочностью, кислотостойкостью, твердостью и устойчивостью к истиранию. Из них изготовляют хирургические инструменты, танковую броню, оболочки торпед и снарядов, наиболее важные детали самолетов и двигателей, контейнеры для хранения радиоактивных веществ. Вольфрам — важный компонент лучших марок инструментальных сталей. Вольфрам применяется в высокотемпературных вакуумных печах в качестве нагревательных элементов. —>

Археи

—> Вольфрам не играет значительной биологической роли. У некоторых архебактерий и бактерий имеются ферменты, включающие вольфрам в своем активном центре. —> —> Существуют облигатно-зависимые от вольфрама формы архебактерий-гипертермофилов, обитающие вокруг глубоководных гидротермальных источников. Присутствие вольфрама в составе ферментов может рассматриваться как физиологический реликт раннего архея — существуют предположения, что вольфрам играл роль в ранних этапах возникновения жизни. —> —> Пыль вольфрама, как и большинство других видов металлической пыли, раздражает органы дыхания. —>

Авторский пост

Понравился пост? Поддержи Фишки, нажми: 113

Понравилось

113 Новости партнёров—> 13

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
А как считаете Вы?
Напишите в комментариях, что вы думаете – согласны
ли со статьей или есть что добавить?
Добавить комментарий