Режущий инструмент, применяемый на фрезерных станках. Классификация и конструкция фрез

Какие фрезы выбрать для ручного фрезера? Этот вопрос задает каждый специалист после покупки своего первого фрезерного станка. На рынке доступно большое количество различных фрез, и новичок зачастую испытывает сложности, пытаясь разобраться с этим.

Общая информация

Фреза – основной элемент фрезерного станка. Эта деталь непосредственно выполняет обработку деревянной заготовки. Результат работы не в последнюю очередь зависит от качества выбранной фрезы.

Принцип строения фрез

Несмотря на многообразие видов, которые могут бывать в магазинах, все они имеют общий тип конструкции.

Имеется две основных части конструкции:

  • хвостовик;
  • рабочая область;

Первый устанавливается в патрон фрезера и предназначен для передачи вращающего момента.

Рабочая область – это место, где находятся лезвия. Эта часть бывает прямой или с оригинальной формой. От этого зависит, для выполнения какой работы подойдет конкретный инструмент.

В состав фрезы могут входить дополнительные элементы, такие как подшипник, винты, шайбы, калибровочные втулки, стопорные муфты. Они нужны для облегчения выполнения работ или для расширения функционала. 

Основные характеристики

Фрезы отличаются собственными характеристиками, на которые следует обращать внимание.

Диаметр хвостовика

В зависимости от размеров фрезы изготавливаются различные зажимные элементы для хвостовика. В первую очередь следует проверить, в каких единицах измерения указан размер последнего – в дюймах или миллиметрах. При несоответствии единиц измерения хвостовика и зажимного элемента возникнут проблемы, которые приведут к сокращению срока службы фрезера и понизят качество работы.

Длина фрезы и режущей основы

Нормальной длиной фрезы считается 60-210 мм, режущей основы – 15-125 мм. Длинные инструменты отличаются увеличенными параметрами: 105-250 мм и 55-140 мм соответственно. Они применяются в основном для черновой обработки. Короткие фрезы применяются для работы с различными материалами и черновой обработки. Их размеры: 60-205 мм для фрезы, 15-120 мм для режущей части.

Сплав

Вида сплава, применяющего для изготовления инструмента:

  • цельный твердый сплав;
  • сплав с твердосплавными напайками.

Главной характеристикой цельного твердого сплава является максимальная точность при работе с деревом.

Детали из сплава с твердосплавными напайками оснащаются режущей частью различной формы, благодаря чему увеличивается спектр выполняемых задач. Их нужно реже точить, чем представителей первого варианта, но сам процесс заточки сложнее.

Отвод стружки

Существуют разные виды избавления от отходов:

  1. Однозаходные с удалением стружки вверх.
  2. Двухзаходные с удалением стружки вверх.
  3. Трехзаходные и четырезаходные с удалением стружки вверх.
  4. С удалением стружки вниз.
  5. С прямыми ножами.

Первый тип отличается одной кромкой и канавкой. Стружка не плавится и не прилипает к инструменту.

Вторые предназначены для обработки с высокой точностью за счет жесткой конструкции. Срез получается ровным и четким.

Третьи характеризуются большим числом рабочих кромок, что увеличивает скорость работы до максимума.

Четвертые подходят для работы с однослойным материалом. Благодаря особому воздействию на материал сверху, эти фрезы позволяют не использовать стопорные элементы, чтобы изделие оставалось на месте в процессе.

Пятые применяются при работе с многослойными материалами. Хорошо подходят для пробивки пазов.

Для предотвращения быстрого износа фрезы должны использоваться в тех типах работ, для которых предназначены.

Типы конструкций фрез

Различают следующие типы:

  • сборные – просты в изготовлении и наиболее популярны. Представляют из себя элементы режущей части, приваренные к стальной основе;
  • со сменными кромками – этим видом можно пользоваться дольше за счет возможности перевернуть двухстороннее лезвие, когда оно затупилось;
  • монолитные – представляют из себя цельный кусок металла, в котором вырезана режущая часть. Невозможность сломать нож в такой фрезе компенсируется необходимостью замены всей детали после нескольких заточек.

Типы лезвий фрез

При рассмотрении лезвий фрезы для ручного фрезера по дереву обнаруживаются такие типы и виды:

  • ножи из быстрорежущей стали. Маркируются буквами HSS. Необходимо выбирать, когда предстоит работа с мягкой древесиной;
  • ножи из твердосплавных металлов. Маркировка – HM. Применяются в основном для работы с твердым материалом. Прочны и устойчивы к повышенным температурам.

Кроме того, есть ряд разновидностей форм лезвий:

  • вертикальные;
  • наклонные;
  • спиральные.

Наклонные обеспечивают более хорошее качество конечного результата за счет срезания кусков дерева, а не срубания, как это делают вертикально расположенные ножи.

Фрезы пазовые

Предназначены для создания канавок, пазов и формирования декоративных поверхностей в заготовке. На рынке представлен товар нескольких видов.

Прямые

Простая деталь в форме цилиндра. Могут применяться:

  • как сверло-фреза;
  • для создания пазов;
  • для сращивания заготовок;

Галтельные

Предназначены для создания галтелей – полукруглых выемок, которые могут располагаться в кромках, основных плоскостях и ребрах. Имеют форму, похожую на символ «U». Могут создавать выемки повышенной сложности для украшения заготовки. Отличаются высоким качеством и надежностью результата.

Галтельные V образные

Отличаются от предыдущего типа формой наконечника, который выполнен в форме буквы «V». Пригождаются, когда необходимо создавать пазы под разными углами.

Конструкционные (Т образные и ласточкин хвост)

Используются для создания Т-образных пазов. «Ласточкин хвост» – другой подвид данного типа, который применяется для тех же целей, но немного отличается по форме. Для работы с этими инструментами необходим большой опыт. Пазы, сделанные с помощью такого инструмента, считаются одним из лучших способов соединения деревянных деталей между собой.

Фасонные

Применимы для создания наиболее сложных плоскостей и канавок. Пазы по форме напоминают фигурные скобки. Создаются под требования определенного заказчика. Используются для решения разного рода специфичных задач. Обладают большим рабочим ресурсом. Позволяют уменьшить количество времени, необходимого на работу с заготовкой.

При создании сложного узора можно предварительно пройти по контуру прямой фазовой фрезой для упрощения процесса.

Фрезы кромочные

Представляют собой режущий инструмент для работы с кромками и создания нужной формы. Можно выделить следующие типы таких деталей.

Прямые

Простые и распространенные, эти фрезы позволяют создавать плоские прямые кромки перпендикулярного типа. Исполнение с подшипником дает возможность работы с круглыми формами.

Калевочные

Целью этого типа являются сложные узоры. Состоят из двух режущих частей. Подходят для выполнения прямой обработки, плавных изгибов и скругления.

В процессе выбора этого типа фрез рекомендуется брать те, что оснащены возможностью регулировки расстояния между режущими элементами.

Фальцевые

Подходят, когда нужно сделать прямоугольные пазы на изогнутых или ровных деталях. Дают возможность получить результат желаемой формы за счет двойного прохода.

Конусные

Особый тип, который используют производители мебели. Применяются для обработки деталей перед соединением. Меняя угол наклона режущей части добиваются получения декоративных фасок для соединения изделий многоугольной и круглой формы.

Галтельные

Используются, когда нужно сделать паз округлой формы. Оснащены двумя подшипниками, что защищают инструмент от перекоса. Результат похож на тот, который получается после пазовых галтельных фрез, но кромочные иногда удобнее.

Фигурные

Характеризуются большим весом. Используются на больших профессиональных станках. Ускоряют процесс за счет работы по всей площади изделия. Можно комбинировать различные элементы.

Полустержневые

Применяются для создания полукруглых выступов на кромках. Превращают прямоугольные заготовки в стержни. Можно сделать фаски и кромки сложной формы и шарнирные соединения. Для этого придется, наряду с полустержневой фрезой, обработать деталь галтельным или калевочным инструментом.

Фрезы комбинированные

Используются для объединения деталей по торцу или кромке. Кроме основного назначения еще шлифуют и расширяют поверхность. Чтобы правильно подобрать этот тип фрезы, следует ознакомиться с подвидами.

Комбинированные универсальные

Создают место соединения двух деталей с пазом и шипом. Экономят время за счет возможности обрабатывать обе объединяемые заготовки без смены насадки.

Пазо-шиповые

Отличаются от предыдущего варианта тем, что паз находится на одной из соединяемых заготовок, а шип на другой.

Для изготовления вагонки

Назначение такое же, как в пазо-шиповом варианте, с той разницей, что создаются фигурные выемки для более надежного соединения.

Комбинированные рамочные

Подшипники, ножи, фиксатор и шайба располагаются на одном основании. Используются в мультикомплексных работах. При работе с этим типом специалист может выставить режущие лезвия в удобном для него порядке.

Фрезы фигирейные

Используются при необходимости сделать фигурные фаски и декоративные кромки. Подшипник дает возможность использовать в работе фигурные и прямоугольные заготовки. Здесь есть три подтипа фрез.

Горизонтальные

Применяются для обработки филенки. В том числе декоративной. Благодаря подшипнику можно работать с прямолинейными и криволинейными кромками.

Горизонтальные двухсторонние

Уменьшают время обработки за счет возможности выполнения за один проход, сразу создавая фигурную часть и шип для паза.

Вертикальные

Самое распространенное применение – создание плинтусов. Хотя этим возможности этих фрез не ограничиваются. Результат работы инструмента – декоративная часть и шиповое соединение.

Изучив виды фрез по дереву для ручного фрезера, можно идти в магазин, чтобы выбрать подходящий вариант, и приступать к работе. А все многообразие вариантов позволит выполнить любую работу, какая только может прийти в голову.

Конструкции фрез

Все фрезы делятся на три вида: цельные, составные и сборные. У первых двух компактная конструкция и они имеют большее количество зубьев. Но для переточки такие фрезы придётся снимать. У сборных зубья закрепляются механически, и их можно быстро заменить, не снимая фрезы. Сборные более практичные, но тоже имеют свои недостатки. Правда у современных фрез таких недостатков становится всё меньше.

Как правило, конструкции фрез различаются на цельные, составные и сборные. Цельные фрезы изготовляются полностью из инструментального материала. Режущая часть составных фрез изготавливается из инструментального материала, а хвостовик, приваренный к ней из конструкционной стали. К составным фрезам также относятся фрезы зубья, которых — пластины из инструментального материала напаиваемые на корпус фрезы. При помощи специальных крепежных элементов – зубья сборных фрез закрепляются в корпусе механически. Режущий элемент «зуб» представляет собой либо резец с напаянной специальной твердосплавной пластинкой либо монолитную пластинку из твердого сплава, инструментальной стали или другого инструментального материала.

Цельные и составные фрезы имеют наиболее компактную конструкцию. При небольших размерах у таких фрез может быть больше зубьев, нежели у сборных фрез. Однако у них есть и существенные недостатки: цельные фрезы — повышенный расход инструментального материала; составные с напайными пластинками из твердых сплавов — невозможность регулировки положение зубьев при износе, а также трудность их восстановления в случае поломки/повреждений. Для переточки эти фрезы нужно снимать со станка – по-другому никак.

Наиболее рациональное применение инструментального материала обеспечивают, конечно же – сборные конструкции. Изношенные зубья можно достаточно быстро заменить, при этом, не снимая со станка фрезу. Вследствие этого значительно сокращаются потери времени, которые связаны со сменой инструмента для переточек.

Недостатками сборных конструкций являются:

  • трудность размещения большого количества зубьев в корпусе обусловленного размера, из-за чего сборные фрезы при равных диаметрах обычно имеют меньше зубьев, нежели составные и цельные;
  • наличие крепежных деталей, которые удерживают режущие элементы в корпусе, следовательно, повышенную трудоемкость производства фрез;
  • весьма высокие требования к обработке базовых поверхностей, которые обеспечивают заданное положение вставных зубьев, а также к точности размеров непосредственно самих зубьев в конструкции, где смену зубьев осуществляют без последующей тонкой регулировки положения их в корпусе фрезы;
  • высокие требования к точности пластинок (из твердых сплавов) в конструкциях фрез с неперетачиваемыми пластинками, которые закрепляются механически.

Эти недостатки с каждым годом уменьшаются, потому, как постоянно разрабатываются новые современные конструкции фрез повышенной технологичности, с упрощением обработки базовых поверхностей, где применены компактные элементы закрепления зубьев и сделаны иные усовершенствования.

Успехи, которые в настоящее время достигнуты в технологии изготовления высокой точности в размерах многогранных неперетачиваемых твердосплавных пластинок, перед фрезерным, токарным и другим инструментом сборных конструкций – открывают широчайшие перспективы применения. Возможность многократного использования корпуса либо державки инструмента, быстрота и простота замены изношенных пластинок без обязательного снятия инструмента со станка, а также его последующей настройки на размер, позволяют такому инструменту быть достаточно экономичным даже при высоких начальных затратах на изготовление элементов крепления зубьев и соответственно самого корпуса.

При разработке новых конструкций различных фрез осуществляют следующие требования, такие как:

1. Число зубьев по возможности должно быть большим, потому как именно от этого пропорционально зависит минутная подача (то есть – производительность обработки).

В свою очередь зубья должны быть прочными/крепкими, а расстояние между ними, шероховатость и форма поверхности стружечных канавок должны четко обеспечивать надежное размещение, а также отвод стружки (последнее крайне важно именно для концевых фрез, которыми обрабатываются глубокие пазы). В некоторых ситуациях, к примеру, во время образования сплошной сливной стружки, переднюю, поверхность зубьев у концевых фрез делают ступенчатой, чтобы происходило дробление стружки. Форма, число зубьев и их месторасположение (шаг) должны обеспечивать равномерное функционирование без значительных вибраций. В ряде случаев это достигается изготовлением фрез с неравномерным шагом зубьев.

Если говорить о торцовых фрезах, которыми обрабатывается чугун, то когда отвод стружки несложный, используют сборные конструкции с достаточно близким размещением зубьев или же с режущими элементами, где каждый имеет по 2-3 зуба.

2. Угол наклона стружечных канавок обязан обеспечивать максимально плавную работу фрезы, а также потребное направление отвода стружки. Во время фрезерования концевыми фрезами труднообрабатываемых материалов, отличные результаты получаются повышением прочности фрезы путем уменьшения числа зубьев с одновременным повышением угла наклона до 35—45°, причем, при этом, несмотря на значительное сокращение числа зубьев, прекрасно, получается, повысить минутную подачу.

В некоторых случаях для уменьшения вибраций прибегают к изготовлению именно «концевых фрез», у которых угол наклона от зуба к зубу – изменяется. Особенно хорошие результаты получаются, когда этот прием сочетают с неравномерным шагом зубьев – и это факт!

3. При снятии значительных припусков торцовыми, дисковыми и концевыми фрезами, также для отрезных и прорезных фрез должно быть максимально обеспечено между зубьями фрезы самое рациональное распределение припуска, которое обеспечивает снижение нагрузки непосредственно на зуб, разделение стружки и, следовательно, надежный ее отвод. Именно для этого используют торцовые и дисковые ступенчатые фрезы, а также дисковые фрезы, у которых обычные зубьями и зубья разнонаправленные размещенные в шахматном порядке.

Непосредственно у прорезных фрез, которыми обрабатываются глубокие пазы и у отрезных фрез число зубьев – уменьшают (в том числе путем специального стачивания зубьев через один), также применяют разнонаправленные зубья, у четных и нечетных зубьев затачивают переходные режущие кромки, на поверхности диска фрезы сбоку у стружечной канавки («холодильники») делают углубления.

4. Форма режущего клина максимально должна обеспечивать наименьшее сопротивление во время резания при сохранении достаточной прочности, а также стойкости инструмента. При этом целесообразно стремиться к использованию инструмента именно с положительным передним углом. Применив двойную форму передней поверхности непосредственно с узкой фаской, а также с отрицательным передним углом у основной режущей кромки и положительным углом «передним» на остальной передней поверхности при наиболее больших силах резания можно легко добиться достаточной надежности и прочности инструмента. Также этого можно достичь, если применить положительный угол наклона основной режущей кромки X. В тех случаях, когда это допускается непосредственной жесткостью самой технологической системы, стоит применять торцовые фрезы с переходной режущей кромкой и малыми углами в плане.

5. При повышенных требованиях к шероховатости обработанных поверхностей и точности размеров должна быть максимально обеспечена достаточно высокая размерная стойкость инструмента непосредственно за счет применения торцовых и дисковых фрез с зачистной режущей кромкой, а также фрез с регулируемой дистанцией между режущими кромками (это делается при обработке пазов для дисковых трехсторонних фрез).

Существуют различные виды механической деревообработки, среди которых особое место занимает фрезерование.

Фреза по дереву – это многолезвийный инструмент широкой номенклатуры, позволяющий добиться высокого качества работ при декорировании и кромочной обработке изделий из дерева, а также врезке в них петель и различной фурнитуры.

Классификация

В соответствии с общепринятой классификацией для обработки дерева применяют фрезы форм, отраженных в таблице.

Виды фрез по дереву Основные виды работ
Торцевые Обработка торцевых поверхностей
Конусообразные Обработка любых пород дерева под разными углами
V-образные Гравировка надписей, снятие фасок под углом 45° и выполнение V-образных пазов
Дисковые Выполнение горизонтальных пазов различных размеров для отрезных работ
Профильные Декорирование изделий
Фальцевые Фрезеровка четвертей
Калевочные Скругление кромок
Ласточкино гнездо Выполнение шиповых соединений различного вида
Фигирейные Обработка кромок филеночных деталей
Галтельные Создание галтелей (желобков) на кромках изделий

Существуют разнообразные подвиды, отличающиеся по конструкции, форме лезвий, применению.

Так, с помощью шарового (шарообразного или сферического с круглой головкой) инструмента можно выполнять художественную резьбу по дереву. Есть изделия специального назначения, применяемые для резки ламината, деталей мебели, ручек, поручней.

Комбинированный вид представляет собой комбинацию пазовой фрезы и шиповой, применяется для сращивания досок.

Погружные инструменты применяют для фрезеровки пазов. Для получения аккуратных пазов выпускают модели с удлиненным хвостовиком.

Основные характеристики

Любой вид фрез можно охарактеризовать несколькими параметрами. Основные из них:

  • геометрия (общая форма);
  • форма режущих кромок (лезвий);
  • конструкция;
  • материал, из которого изготавливаются лезвия;
  • диаметр внешний, посадочный, хвостовика.

Независимо от параметров, все виды должны обладать высокой прочностью, поэтому их делают из твердых, прочных материалов с последующей термической обработкой. Применяется напыление, увеличивающее износостойкость изделий.

Конструктивное исполнение

Хвостовик и режущие зубцы или лезвия – основные части фрезы по дереву. Их делают из цельного куска металла (такие инструменты называют монолитными) или из отдельных частей с последующим скреплением (сборные, составные).

Монолитные фрезы изготавливаются из инструментальной стали (твердость не ниже HRC 58…62) заодно с режущей частью, которую затем затачивают. Они имеют небольшой эксплуатационный ресурс, что связано с невозможностью замены режущих пластин по мере их износа. Основное их преимущество – низкая стоимость.

Сборные фрезы представляют собой стальную болванку с напаянными лезвиями, которые изготавливаются из инструментальной стали или твердосплавных металлов. Большое значение при их изготовлении уделяют рецептуре и качеству припоя, которым припаивают лезвия. Это должна быть тугоплавкая марка, содержащая медь и серебро. К таким припоям относятся, например, ПСр 37,5 и ПСр 40.

Обратите внимание! Фрезы с напаянными лезвиями не перетачиваются.

Фрезы со сменными лезвиями (фрезерные головки) – это разновидность сборных. В них лезвия устанавливаются таким образом (механическое крепление), чтобы их можно было менять по мере износа.

Встречаются также фрезерные головки, в которых объединены в единое целое несколько разновидностей режущих лезвий, их называют наборными. При этом можно изменить порядок набора режущих частей и расстояние между ними. Инструмент при такой замене не должен во время работы терять свою продольную устойчивость.

Наборы используют для получения фасонных изделий из дерева и других работ с древесиной.

Для того чтобы упростить выполнение работ, связанных с точным фрезерованием при помощи ручного деревообрабатывающего инструмента, кромочную фрезу по дереву часто оснащают небольшим подшипником. Он монтируется у одного из краев режущей кромки (вверху или внизу) и при работе обеспечивает правильное направление движения, упираясь в край деревянной детали.

Типы лезвий

По типу лезвий фрезы по дереву делятся на твердосплавные (маркируются аббревиатурой HSS) или быстрорежущие (обозначаются буквами НМ). При этом инструментом с быстрорежущими кромками обрабатывают мягкую древесину, а с твердосплавными лезвиями – твердые породы дерева.

Твердосплавные лезвия обладают высоким температурным коэффициентом и улучшенными рабочими характеристиками.

При этом лезвия у всех типов фрез могут располагаться вертикально или под наклоном. Вертикально-ориентированные лезвия рубят материал. Наклонные ножи срезают слой материала, что позволяет избежать сколов древесины по краям деталей. Встречается также и спиральное расположение режущих кромок. Использование инструмента с наклонными или спирально-ориентированными лезвиями значительно повышает качество обработки поверхности.

Геометрические параметры

Основным параметром, влияющим на совместимость фрез с конкретной моделью деревообрабатывающего станка (фрезер, станок с ЧПУ и др.), служит размер хвостовика. Вызвано это тем, что для их установки в станок используются специальные цанговые зажимы (цанги), надежно охватывающие и зажимающие хвостовик. На практике используются цанги, у которых диаметр посадочного места измеряется в дюймах (1/2″ и 1/4″) или миллиметрах (6,12 или 18 мм).

Обратите внимание! Нельзя вставлять в дюймовую цангу фрезу с миллиметровым хвостовиком и наоборот. Это может поломать инструмент.

Посадочные размеры фрез зависят также от способа установки. Насадные фрезы, устанавливаемые на шпиндель стационарного фрезерного станка, имеют диаметр посадочной части 32 мм. У концевых (пальчиковых) фрез, которые предназначены для установки в патрон ручной дрели или цангу фрезера, диаметр хвостовика может быть разным – от 6 до 12 мм.

Оборудование для работы с фрезами по дереву

Фреза – это основная деталь практически любого деревообрабатывающего инструмента. Ее можно установить:

  • в обычную дрель;
  • фрезерный станок (фрезер);
  • промышленное оборудование.

Электроинструментом можно проводить грубую и более тонкую обработку дерева с высокой скоростью.

Дрель

Применение фрез дает возможность домашним умельцам значительно расширить функциональные возможности обычной дрели, предназначенной только для сверления. При этом дрель превращается в универсальный инструмент, при помощи которого можно будет обрабатывать детали, изготовленные из различных пород дерева.

Используя фрезы по дереву, предназначенные для работы с дрелью, можно получать отверстия большого диаметра без применения специальных насадок на дрель типа балеринка или коронка (корончатая насадка).

Для работы с дрелью используют только пальчиковые фрезы, режущие кромки которых имеют самую разнообразную форму. Кроме того галтельные, кромочные (четвертные) и конусные фрезы часто оснащают опорным подшипником, с помощью которого ограничивают глубину врезания лезвий в древесину.

Режущие лезвия могут быть заостренными или затылованными. У заостренных зубьев передняя и задняя поверхности плоские, причем затачивают по задней поверхности.

При этом во время перезаточки режущая часть может изменить свои геометрические размеры. Избежать этого можно, используя инструмент с затылованными лезвиями. У них плоской выполнена только передняя поверхность, по которой и осуществляется заточка. Перезатачивать такие фрезы можно много раз, не опасаясь, что изменится геометрия режущих кромок.

Фрезер

Ручной фрезер – это инструмент, который предназначен для обработки различных пиломатериалов и изделий из них. Он отличается от дрели наличием регулируемой опорной платформы и способностью работать на высоких оборотах (до 30 тыс. об/мин). С помощью фрезера можно с высоким качеством:

  • сращивать разные заготовки, соединяя их способом «шип/паз» (кромочные работы), снимать фаску с бруса;
  • врезать фурнитуру, замки, петли;
  • формировать объемные формы на плоских поверхностях (декорирование);
  • вырезать деревянные заготовки, имеющие сложную конфигурацию.

Для выполнения этих работ используют кромочные, пазовые, копировальные и концевые фрезы по дереву.

Пазовые фрезы используют, когда нужно получить углубления определенной формы, например, в форме буквы Т (Т-образные), полукруглые или типа «ласточкин хвост».

Кромочные фрезы используются при изготовлении кромок на деталях из дерева. Как правило, их оснащают упорным подшипником, который предотвращает излишнее погружение инструмента в тело детали. Кроме того, он позволяет регулировать глубину вылета. Если подшипник не предусмотрен, то надо применять параллельный упор или шаблон.

Для декоративной обработки филеночных деталей используются фигирейные фрезы горизонтального типа. Они достаточно тяжелые и имеют большой диаметр. Учитывая большие усилия, которые необходимы при работе с такими фрезами, их оснащают хвостовиком, диаметр которого составляет 12 мм. Их применяют на стационарном оборудовании.

У концевых фрез по дереву для ручного фрезера режущие кромки расположены на торце рабочей поверхности. Кроме того в работе принимает участие и боковая кромка, что позволяет перемещать вращающую фрезу в плоскости опорной площадки. Качество обработки поверхностей определяется количеством режущих лезвий. Как правило, концевые фрезы имеют монолитную конструкцию, но встречаются и составные.

Отдельную группу концевых изделий составляют фрезы Шейпера – шарошки (борфрезы).

Используют их на промежуточных этапах обработки, а также в случаях, когда необходимо осуществить финальную доводку конфигурации детали. Их режущая кромка представляет собой крупные насечки (зубья). Работая с шарошкой, важно правильно выбрать режим. Это позволит избежать поджога дерева, который возможен при повышенном числе оборотов. А оригинальная борфреза «кукуруза» (шарошка с винтовым расположением зубцов) обеспечит снижение нагрузки на вал электромотора фрезера.

Копировальные фрезы – это редко встречающийся вид инструмента для ручного фрезера. Они отличаются не только количеством режущих кромок, но и размещением опорных подшипников, которые могут располагаться с любой стороны. В некоторых моделях предусмотрено два подшипника (сверху и снизу). Во время работы подшипник двигается по шаблону, благодаря чему обрабатываемая заготовка приобретает заданную форму.

Промышленные деревообрабатывающие станки

Массовое производство высококачественных изделий из дерева невозможно без использования высокопроизводительного деревообрабатывающего оборудования.

Для деревообрабатывающих станков промышленностью выпускаются многочисленные виды режущего инструмента, в том числе:

  • спиральные и строгальные фрезы, которые используются в строгальных станках;
  • дисковые фрезы по дереву (с двух- или трехсторонними пазами) помогают получить неглубокие пазы и канавки;
  • профильные фрезы применяются в процессах декоративной обработки деталей из дерева.

Современное деревообрабатывающее предприятие немыслимо без фрезерно-гравировальных станков с числовым программным управлением (ЧПУ), оснащенных инструментальным порталом, имеющим 3 степени свободы.

Эти станки способны в автоматическом режиме обрабатывать заготовки, придерживаясь заданного пространственного маршрута. При этом высокое качество обработки обеспечивается не только техническими параметрами станка (мощность шпинделя, высокоточная механика и пр.) и возможностью выбора математической модели в качестве шаблона, но и характеристиками режущего инструмента.

Номенклатура фрез по дереву для станков с ЧПУ для 3d-фрезерования отличается большим разнообразием. Связано это с тем, что процесс 3d-обработки считается одним из самых сложных и выбрать режущий инструмент, который обеспечит высокое качество обработки с минимальными затратами времени, совсем не просто. Так, исходя из типа заготовки, могут понадобиться фрезы, изготовленные из быстрорежущей или твердой стали. При этом материал режущей кромки не должен быть хрупким.

Для деталей со сложным рельефом, имеющим большое количество мелких деталей, используют цилиндрические или конусные сферические фрезы с диаметром 3…6 мм (для черновой обработки) и 1…3 мм (для финишных операций). Применяют чашечные сверла, позволяющие сверлить древесные плиты, композитные материалы.

Для получения глубокого 3d-рельефа используют конические двухзаходные фрезы из твердосплавных материалов. Это позволяет исключить операции чернового фрезерования. Для обработки особо твердых пород дерева используют сферические или V-образные граверы.

Возможно, вы уже задавались вопросом расчета режимов резания при фрезеровании, но при этом продолжали ломать фрезы и не понимать, что происходит? Почему так? Почему, например, вы уменьшаете подачу, а фреза всё равно работает в неправильном режиме? Звенит, издает нехарактерный звук и, как результат, быстро тупится и ломается. В этой статье вы найдете ответы на интересующие вас вопросы:

  • Почему не стоит полагаться на режимы резания из каталогов?
  • Какие параметры входят в расчёт режимов резания?
  • Как назначать обороты и подачу по внешнему виду инструмента?
  • Как работать с различными материалами?
  • Какой методики расчёта режимов резания придерживаться?

Сразу оговорюсь, что в начале статьи будет некоторая вводная информация, предназначенная для общего понимания. Рекомендую читать все по порядку, чтобы не только пользоваться методикой расчёта режимов резания, но и понимать, что откуда берется, и почему именно так. Данная статья в первую очередь рассказывает о расчёте режимов резания для ЧПУ станков, так как на них нет возможности «пощупать» усилие в процессе работы, как это делают на универсальных станках. На ЧПУ оборудовании нужно изначально назначать правильный режим, и только потом вносить небольшие коррективы в пределах ±20%.

Режимы резания из каталогов.

Мы часто слышим вопрос от наших клиентов: «Какие обороты и подачу поставить на ту или иную фрезу?» Можно ответить кратко: «Посмотрите по каталогу производителя!» Но к сожалению, это не является правильной рекомендацией по нескольким причинам:

  1. Продавец зачастую завышает режимы резания на свою продукцию на 20-40%, чтобы иметь конкурентное преимущество перед другими поставщиками.
  2. Продавец в большинстве случаев не имеет практического опыта работы с режущим инструментом и различными материалами.
  3. И самое главное – когда вы соберетесь фрезеровать, каталога под рукой не окажется, а интернет предательским образом отключится!

На что тогда полагаться? На методику расчёта режимов резания, которую мы для вас подготовили! Она является результатом личного опыта работы на фрезерных ЧПУ станках с различными материалами. Возможно, что полученные режимы будут не самыми выигрышными в плане времени обработки, но они точно сохранят ваш инструмент и позволят работать в безопасном для него режиме, что наиболее важно для начинающих операторов ЧПУ!

Параметры режимов резания.

image

Как видно из рисунка, в режимы резания для фрезы входит 3 параметра:

  • S – обороты (частота вращения шпинделя)
  • F – подача (скорость, с которой движется инструмент)
  • P – величина съема (слой материала, срезаемый фрезой)

Это именно та последовательность, с которой мы производим расчёт режимов резания для фрезы – далее будем её придерживаться. Данные буквенные обозначения используются в том числе и в самой программе на ЧПУ станок. Например, чтобы включить шпиндель на 1500 об/мин по часовой стрелке, мы записываем в программу «S1500 M3». Или, чтобы сделать проход вправо на 50 мм с подачей 300 мм/мин, мы пишем в программе «G1 X50 F300».

Внешний вид инструмента — о чём он нам говорит?

Дадим краткую характеристику фрез по внешнему виду, которую следует учитывать при расчёте режимов резания. Рассмотрим три примера:

image

Данная фреза имеет острые режущие кромки, большой угол завивки винтовой канавки, она 2-х зубая и не имеет покрытия. Все эти факторы свидетельствуют о том, что перед нами инструмент, идеально подходящий для фрезерования цветных металлов, а также вязких материалов (меди, пластиков), которые подвержены сильному нагреву и оплавлению в процессе резания. Такая фреза хорошо подходит для чистовых обработок с небольшими усилиями резания, но не подходит для сталей и черновых обдирок заготовок с большими съёмами.

image

Данные фрезы имеют более тупые углы заточки режущих кромок, они 4-х зубые (более жесткие) и имеют слой покрытия, уменьшающего трение и увеличивающего твёрдость поверхностного слоя. Всё это свидетельствует о том, что этот инструмент идеально подходит для обработки сталей, они достаточно прочные для работы с большими подачами, подходят в том числе и для черновых обдирок, при этом позволяют достичь хорошей чистоты поверхности.

image

На этом рисунке мы видим составную фрезу, состоящую из корпуса и твердосплавных пластинок. Как правило, такие фрезы имеют диаметр от 20 мм и более, так как цельный твердосплавный инструмент такого размера становится экономически не выгодным. Предназначение и поведение данных фрез зависит от установленных на них пластинок. Если пластинки без покрытия (блестящие) и имеют остро заточенные режущие кромки, значит, они предназначены для обработки цветных металлов. Если пластинки имеют покрытие и на ощупь кажутся тупыми, то они предназначены для сталей. По опыту использования, покрытие «золотистого» цвета хорошо подходит под нержавеющие стали, а покрытие черного цвета — под обычные конструкционные стали. Фрезы с твердосплавными пластинками «любят» большие подачи.

Вывод: не обязательно заглядывать в каталог или на сайт производителя режущего инструмента и искать у них калькулятор расчёта режимов резания – учитесь идентифицировать фрезы по их внешнему виду. Разновидностей не так много.

Особенности работы с различными материалами.

Здесь мы не будем вдаваться в подробности, а просто дадим список распространённых материалов и опишем особенности работы с ними. Список составлен по принципу от легкообрабатываемых (некапризных) материалов к более сложным.

  • Пластики (модулан, капролон, фторопласт) – наиболее легкообрабатываемые материалы. Можно обрабатывать как на высоких, так и на низких оборотах, как с высокими, так и с низкими подачами. На инструмент действуют небольшие силы резания, можно давать большое заглубление. Обращать внимание нужно только на оплавление материала и в случае нагрева снижать обороты.
  • Цветные металлы (дюраль, латунь, бронза) – также очень легко обрабатываемые материалы. Обрабатываются на высоких скоростях, стружка сходит легко, не перегреваются, на инструмент действуют небольшие силы резания. Можно обрабатывать без СОЖ (смазочно-охлаждающая жидкость). Режимы резания можно корректировать в большом диапазоне без боязни повредить инструмент.
  • Медь, алюминий (мягкие алюминиевые сплавы типа АМГ) – всё то же самое, что и для цветных металлов, но с одной особенностью. В случае превышения скорости происходит резкий нагрев и оплавление материала, что моментально забивает фрезу – она перестаёт резать и сразу ломается. Для предотвращения этого явления нужно применять СОЖ.
  • Конструкционные стали – для них обязательно применение фрез именно под стали с 3/4-мя зубьями и желательно с покрытием. Обработка ведется легко, если станок имеет достаточную жёсткость. Для сталей не стоит применять большие обороты, а также не стоит сильно снижать подачу, так как в этом случае фреза не режет материал, а «зализывает», что приводит к нагреву и ухудшению качества обрабатываемой поверхности. Величина снимаемого материала одним зубом (подача на зуб фрезы) должна быть достаточной.
  • Нержавеющая сталь, титановые сплавы – наиболее капризные материалы в обработке. Требуют применения специального инструмента, подходящего для обработки этих материалов. Не «любят» большие обороты и подачу, требуют интенсивного охлаждения СОЖ. Не стоит усердствовать с глубиной врезания и снимать более чем 1/3 от диаметра фрезы.

Методика расчётов режимов резания при фрезеровании.

1. Определяемся с первым параметром – оборотами фрезы (S).

Обороты рассчитываются исходя из оптимальной скорости резания для того или иного материала. Скорость резания – это не обороты! Это скорость, с которой режущая кромка движется относительно материала в метрах в минуту. Скорость резания – это отправная величина для расчёта, но не конечное знание оборотов, которое нам нужно. Условно разделим материалы на цветные металлы и стали, а фрезы на монолитные и с пластинками. Привожу рекомендуемые (подобранные опытным путем) скорости резания.

Монолитные фрезы (значения чуть ниже):

  • Цветные металлы 120-160 м/мин
  • Стали 60-100 м/мин

Фрезы с пластинками (значения чуть выше):

  • Цветные металлы 180-220 м/мин
  • Стали 120-160 м/мин

Формула расчёта скорости резания выглядит так:

image

Но нас всё-таки интересуют обороты, поэтому выразим S и получим формулу расчёта оборотов шпинделя:

image

где:

S – обороты шпинделя (об/мин)

V – скорость резания (м/мин)

D – диаметр фрезы (мм)

Точности тут не требуется, полученные обороты можно округлять в любую сторону. Также стоит оговориться, что если Ваш станок не выдает высокие обороты, то не стоит беспокоиться – ставьте те, которые выдает, и работайте. Просто это будет немного медленнее, чем могло бы быть, так как подача будет напрямую зависеть от оборотов – чем меньше обороты, тем меньше будет подача.

Исходя из этих параметров, можно составить таблицу с рекомендациями оборотов для наиболее распространённых диаметров фрез.

image

2. Определяемся со вторым параметром – подачей (F).

В первую очередь это актуально для концевых монолитных фрез, так как они наиболее подвержены поломке в случае завышения или занижения скорости подачи. Для фрез с твердосплавными пластинками подачу можно брать исходя из расчёта 0.1-0.2 мм на зуб. При этом подача 0.1 мм на зуб будет идеальна для инструмента небольшого диаметра (20-30 мм), а 0.2 мм стоит применять только для более крупных фрез (от 40 мм в диаметре и более).

Для определения скорости подачи воспользуемся простой формулой:

F = D х k х N х S

где:

F – подача (мм/мин)

D – диаметр фрезы (мм)

K – коэффициент 0.006-0.008

N – количество зубьев фрезы

S – обороты (об/мин)

Поясняю:

Умножая диаметр инструмента на коэффициент k, мы получаем допустимую подачу на один зуб фрезы. Например, возьмем инструмент диаметром 8 мм – у нас получится 8*0.007 = 0.056 мм/зуб. Если один зуб фрезы будет снимать меньше, то может произойти «зализывание» материала, нагрев и поломка. Если на один зуб будет приходиться больше, то возможна поломка фрезы из-за значительного увеличения сил резания. Далее, подачу на один зуб фрезы мы умножаем на количество зубьев (например, 3 зуба), получаем: 0.056*3 = 0.168 мм/об. Это тот путь фрезы, который она будет проходить за один оборот. Нам остаётся только умножить это значение на ранее выбранные исходя из обрабатываемого материала обороты, и готово! 0.168*5600 = 940 мм/мин.

Таким образом, для обработки цветных металлов 3-х зубой фрезой диаметром 8 мм нам необходимо поставить на нее 5600 об/мин и подачу около 900 мм/мин. Вот и весь расчёт!

3. Определяемся с третьим параметром – величиной съёма (P).

Или, другими словами, глубиной фрезерования. Тут всё просто, достаточно придерживаться правила: 1/3 от диаметра инструмента. Например, для фрезы диаметром 6 мм мы выберем величину съёма 2 мм, а для инструмента диаметром 12 мм допустимая глубина фрезерования составит уже 4 мм.

image

Но есть и нюансы:

  • Если вы работаете только краем фрезы, то глубину фрезерования можно значительно увеличивать. Например, при использовании новомодного высокоскоростного фрезерования инструмент входит в материал на всю глубину режущей кромки, при этом величина перекрытия составляет всего около 5%.
  • Если вы работаете с труднообрабатываемыми материалами, то правило 1/3 от диаметра может быть губительным для инструмента, возможно величину съёма придется значительно уменьшить.
  • Если у вас скоростной шпиндель и нет возможности поставить на инструмент малые (расчётные) обороты, то ставьте больше, которые станок в состоянии выдать. Но при этом значительно уменьшайте глубину резания – это убережет фрезу от поломки, а шпиндель от перегрузки.
  • Если у вас недостаточно жёсткий станок, то забудьте про большие съёмы по глубине в принципе. Самым оптимальным будет съём по 0.5-1 мм при рабочем диаметре фрезы не более 6 мм.

Заключение:

Для расчёта режимов резания при фрезеровании действуйте следующим образом:

  1. Определитесь с обрабатываемым материалом и внимательно осмотрите фрезу.
  2. Выберите из таблицы подходящие для нее обороты исходя из материала, типа фрезы и её диаметра.
  3. По формуле расчёта режимов резания посчитайте необходимую подачу. Для труднообрабатываемых материалов выбирайте коэффициент 0.006, а для легкообрабатываемых – 0.008.
  4. Определитесь с глубиной фрезерования, учитывая наши рекомендации.

Задача для закрепления:

— необходимо фрезеровать паз шириной 10 мм на глубину 6 мм

— концевой 3-х зубой фрезой диаметром 10 мм

— обрабатываемый материал: сталь

Ответ:

S (обороты) = 2500 об/мин

Выбрали из таблицы для монолитных фрез по стали.

Кол-во проходов = 2

Так как глубина фрезерования 6 мм, значит за один проход фрезой его сделать не получится, фреза скорее всего сломается. Разбиваем фрезеровку на 2 прохода по 3 мм.

P (съём) = 3 мм

F (подача) = 525 мм/мин

Умножаем диаметр фрезы на коэффициент 0.007, затем на количество зубьев и на выбранные ранее обороты.

Надеемся наша статья была для Вас полезна! Если Вам всё понравилось — почитайте остальные статьи, написанные нашими инженерами. Пользуйтесь на здоровье и берегите свой инструмент! 😉

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
А как считаете Вы?
Напишите в комментариях, что вы думаете – согласны
ли со статьей или есть что добавить?
Добавить комментарий